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Abstract 
 

This study examined the development and evaluation of an artificial intelligence (AI)–based system designed to 
detect emotional stress among students using thermal imaging and voice analysis. The primary goal was to 
develop a user-friendly software interface capable of real-time processing within a personal computer 
environment. Thermal and voice data were collected from 30 student participants in a simulated classroom 
setting to train and validate the AI model. The system integrated convolutional neural networks (CNN) for 
thermal classification and recurrent neural networks for voice sequence analysis to interpret physiological and 
acoustic indicators of stress. Results showed that the combination of thermal and voice inputs significantly 
improved the accuracy and reliability of emotional state recognition compared to single-input systems. The 
multimodal fusion model achieved 91.4% accuracy in classifying stress states, with a strong correlation between 
AI-generated and self-reported stress levels (r = 0.86, p < .001). The AI model also demonstrated consistent 
responsiveness and operational stability, supporting its potential application in classroom monitoring. Overall, 
the integration of thermal imaging and voice analysis presents a promising tool for helping educators 
understand students’ emotional well-being and enhance the learning environment. 
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INTRODUCTION 

 
Academic institutions worldwide have reported 
rising levels of stress among students, with 
prevalence rates estimated between 30% and 
50% across various educational settings 
(Pascoe et al., 2020; Shah et al., 2021). Sustained 
emotional stress has been shown to impair 
concentration, reduce memory retention, 
weaken physical health, and diminish overall 
academic performance. Despite these well-
documented effects, student stress frequently 
goes undetected due to the absence of real-
time and non-invasive monitoring systems. 
Existing assessment approaches such as self-
report surveys, psychological questionnaires, 
and wearable biosensors are often subjective, 

intrusive, or impractical for continuous use in 
typical classroom environments (Villani et al., 
2021). This highlights the need for innovative, 
unobtrusive technologies capable of detecting 
emotional stress as it occurs. 
 
Over the past decade, advances in artificial 
intelligence (AI) have expanded the possibilities 
for emotion recognition using non-contact 
modalities, including facial expression analysis 
and voice modulation detection (Li et al., 2022). 
However, many existing systems depend on 
visible-light cameras or cloud-based 
processing, which raises important concerns 
regarding privacy protection, data latency, and 
the ethical implementation of such technologies 
in academic institutions (Roshani et al., 2023). 
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Thermal imaging has emerged as a promising 
alternative. Unlike traditional cameras, thermal 
imagers detect infrared radiation, providing a 
visual representation of skin surface 
temperature, a key indicator of emotional 
arousal or stress (Ioannou et al., 2014). Studies 
in psychophysiology have shown that facial 
temperature distribution changes in response 
to stress, especially in areas such as the 
forehead, periorbital, and nose regions (Garbey 
et al., 2017; Pavlidis & Levine, 2022). Similarly, 
stress alters vocal features such as pitch, 
intensity, and cadence, which can be detected 
through audio signal processing (Yildirim et al., 
2011; Sondhi et al., 2020). 
 
Despite this potential, existing AI systems that 
incorporate thermal or vocal data for stress 
detection are typically high-cost, cloud-based, 
or designed for controlled laboratory conditions 
(Wang et al., 2021). This gap points to a pressing 
need for a more accessible, privacy-conscious 
solution that can function offline and be 
deployed easily in classrooms. 
 
This study fills this gap by developing a PC-
based, edge-computing AI system that 
integrates thermal imaging and voice analysis 
to detect emotional stress in students. The 
proposed solution is designed to be low-cost, 
real-time, and non-intrusive, offering 
educators and mental health professionals a 
practical tool for proactively monitoring student 
well-being. Ultimately, this approach aims to 
deliver a scalable and privacy-preserving 
method to identify emotional stress, thereby 
supporting improved academic performance 
and psychological health among students. 
 
Research Objectives. This study aimed to 
determine the following: 
 
1. To design and develop an AI-based 

emotional stress detection system for 
students that integrates thermal facial 
imaging and voice signal analysis. 
 

2. To collect and preprocess thermal facial 
images and voice recordings from students 
as input data for AI-based emotional stress 
detection and stress-level estimation. 

3. To test and validate the performance of the 
AI-based emotional stress detection system 
within a simulated classroom environment. 
 

4. To determine the relationship between AI-
detected emotional stress levels and 
students’ self-reported stress levels. 

Research Paradigm. This study was anchored 
on the integration of psychophysiological 
theories and AI (artificial intelligence) 
techniques to detect emotional stress among 
students through thermal imaging and voice 
analysis. Grounded in Cognitive Appraisal 
Theory and Affective Computing Theory, the 
framework was built on the premise that 
emotional stress is manifested through 
measurable physiological and behavioral 
changes such as variations in facial 
temperature and vocal tone, which could be 
captured, processed, and interpreted using 
computational intelligence (Scherer, 2005; 
Picard, 2022). 
 

 
Figure 1 
The conceptual design depicting the relationship between 
variables. 

 
The conceptual framework (Figure 1) of the 
study was structured using the Input–Process–
Output (IPO) model, which provided a 
systematic flow from data collection to system 
output, ensuring a logical structure for 
developing and validating the proposed AI-
based stress detection system (Pavlidis & 
Levine, 2022). 
 
The input phase consisted of two main sources 
of data: thermal imaging and voice recordings. 
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Infrared thermal cameras were used to capture 
heat signatures from critical facial regions such 
as the forehead, nose, and periorbital area (the 
region surrounding the eyes). These 
temperature variations were considered 
physiological indicators of emotional arousal 
and stress, as previous psychophysiological 
studies have established that facial skin 
temperature fluctuates in response to stress or 
anxiety. Simultaneously, audio samples were 
collected from student participants during both 
relaxed and stress-inducing classroom 
activities. Changes in pitch, tone, and speech 
rate were interpreted as behavioral cues 
associated with emotional strain. Together, 
these two input modalities provided a 
comprehensive dataset representing both the 
physiological and behavioral dimensions of 
student stress. 
 

The process phase involved a series of 
technical operations designed to transform the 
collected data into meaningful insights. Initially, 
the raw thermal and voice data underwent 
preprocessing and feature extraction. For 
thermal images, image enhancement and 
segmentation techniques were applied to 
extract temperature distribution patterns and 
regions of interest. For voice data, acoustic 
analysis was conducted to obtain measurable 
parameters such as pitch, Mel-Frequency 
Cepstral Coefficients (MFCCs), and speech 
cadence. These extracted features were then 
used to train AI models specifically, 
Convolutional Neural Networks (CNNs) for 
thermal imaging and Long Short-Term Memory 
(LSTM) networks for voice analysis. The outputs 
from both AI models were fused through a 
classification algorithm that analyzed and 
interpreted the combined data to determine 
whether a student was “stressed” or “not 
stressed.” This process ensured that both 
physiological and behavioral indicators were 
jointly assessed to enhance the accuracy and 
reliability of stress detection. 
 

The output of this framework was an AI-based 
emotional stress detection system integrated 
into a user-friendly software interface. The 
system operated in real time and provided 
immediate visual feedback regarding students’ 

stress levels, enabling educators and mental 
health professionals to monitor emotional well-
being during classroom activities. It was 
designed to be low cost by using affordable 
sensors and open-source AI frameworks, non-
invasive by eliminating the need for wearable 
devices, and privacy conscious by implementing 
local edge-computing instead of cloud-based 
processing. Furthermore, the system’s 
structure and functionality were tailored to 
ensure its feasibility for use in public school 
environments, supporting large-scale 
deployment without compromising data 
security or ethical standards. 

 
Overall, this conceptual framework guided the 
development of a practical, affordable, and 
ethical AI-driven tool that enhanced emotional 
awareness and promoted proactive well-being 
strategies within educational settings. It 
demonstrated how the combination of 
psychophysiological theory and AI could be 
applied to develop an innovative, non-contact 
system capable of detecting emotional stress in 
real time, thereby contributing and promoting a 
more safer and more supportive learning 
environment. 
 
LITERATURE REVIEW 
 
Theoretical foundations of emotion and stress. 

Emotion and stress detection research has 
matured substantially over recent decades. 
Early conceptualizations such as that of 
Scherer (2005) described emotions as complex, 
multi‑component phenomena involving 
synchronized physiological, behavioral, and 
cognitive processes triggered by internal or 
external stimuli. These emotional states 
influence both mental functioning and physical 
responses. While the work of Picard (2022) in 
the field of affective computing emphasized that 
emotional responses can be quantified and 
interpreted by computational systems, offering 
opportunities for precise, objective analysis of 
human affective experiences. 
 
These foundational definitions have provided 
the conceptual groundwork for more recent 
efforts to detect and monitor stress and 
emotion using technology. 
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Stress in educational settings and need for 

objective detection. Student stress represents 
a major concern in educational psychology. 
According to Pascoe et al. (2020), academic 
pressure, social expectations, and heavy 
workloads are among the prime sources of 
emotional fatigue and reduced academic 
performance. Chronic or prolonged stress 
impairs concentration, weakens memory, and 
negatively affects overall mental health 
highlighting the urgency of early detection and 
intervention in academic environments. 
 
Traditional stress-assessment methods such 
as self-report questionnaires or wearable 
biosensors are often criticized for their 
subjectivity, invasiveness, or impracticality in 
everyday classroom contexts. Consequently, 
research interest has shifted toward more 
objective, non-contact, and real-time detection 
methods. 
 
Non-contact methods: Thermal imaging. Non-
contact psychophysiological methods, and in 
particular thermal infrared imaging (TIRI), have 
gained traction as promising alternatives for 
stress and emotion recognition. Early 
investigations (e.g., Ioannou et al., 2014; Garbey 
et al., 2017) demonstrated that skin temperature 
changes particularly around facial regions such 
as the periorbital area, nose, and forehead 
correlate strongly with stress and arousal 
levels. 
 
More recently, the promise of TIRI has been 
enhanced by machine learning and 
deep‑learning techniques. For instance, a 2025 
study published in Sensors introduced a 
machine‑learning–based facial thermal image 
analysis system capable of estimating dynamic 
emotional arousal using pixel-level thermal 
data a significant step beyond earlier region-of-
interest (ROI) methods. The authors showed 
that models such as ResNet‑34 outperform 
classical linear regression or ROI‑based 
approaches in mapping facial temperature 
changes to self-reported emotional arousal, 
suggesting that thermal imaging can serve as a 
high‑granularity, noninvasive method for 
continuous emotion sensing (Tang, 2025). 

 
Similarly, other recent works (e.g., a 2025 study 
exploring low-cost thermal cameras with ViT 
and CNN architectures) point to the growing 
feasibility of affordable and accessible 
thermal‑based emotion recognition (Black & 
Shakir, 2025). However, limitations persist. 
Environmental factors such as ambient 
temperature, humidity, and background 
conditions can distort thermal readings and 
affect measurement accuracy, as reported in 
the review of Pavlidis and Levine (2022) of 
thermal facial imaging methods. 
 
Moreover, some studies caution about 
generalizability: differences in skin type, 
ethnicity, age, or physiological baseline 
temperature may alter thermal responses, and 
many of the thermal‑imaging studies have 
relatively small or homogeneous samples. This 
calls for more diverse, much wider and larger-
scale studies to validate findings across 
populations. 
 
Voice (speech) analysis for emotion and stress 

detection. Parallel to thermal imaging, voice 
and speech analysis has also been explored as 
a non-contact modality for emotional stress 
detection. Variations in speech features — such 
as pitch, energy, speech rate, and spectral 
characteristics — have been shown to fluctuate 
under stress or emotional arousal. For 
instance, Sondhi et al. (2020) demonstrated that 
such vocal changes can be used to classify 
emotional states via machine learning 
algorithms. 
 
More recent work continues to strengthen the 
voice modality for emotion recognition. A 2023 
study by Wang, Gu, Yin, Han, Zhang, Wang, Li, 
and Quan proposed a “multimodal transformer-
augmented fusion” method for speech emotion 
recognition that improved performance by 
capturing fine-grained interactions among 
different modalities (e.g., speech + other 
channels) using hybrid fusion strategies (Wang 
et al., 2023).  
 
Nevertheless, voice‑based methods face 
challenges especially when deployed among 
diverse populations because language, accent, 
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and cultural differences can significantly affect 
acoustic features, reducing cross-population 
generalizability. This variability remains a 
critical limitation if voice-based systems are to 
work reliably in multilingual, multicultural 
educational settings. 
 
Multimodal approaches: Integrating thermal, 

voice, and other modalities. Given the 
limitations of unimodal systems (thermal-only 
or voice-only), recent research has 
increasingly adopted multimodal emotion 
recognition (MER), combining multiple data 
sources to improve robustness and accuracy. A 
2023–2024 review on multimodal emotion 
recognition noted this shift, summarizing how 
merging physiological signals, facial/thermal 
imaging, speech, and sometimes text cues yield 
more resilient emotion detection systems (Guo, 
2024). For instance, a 2024 study in Multimedia 
Tools and Applications fused visual (face) and 
auditory (speech) signals using LSTM-based 
temporal modeling and reported state-of-the-
art accuracies across several public datasets, 
demonstrating the value of temporal dynamics 
in continuous emotion recognition (Salas-
Cáceres, 2025).  
 
Moreover, there are recent studies combining 
thermal imaging with other modalities. A 2023 
article titled “Multi‑modal affect detection using 
thermal and optical imaging in a gamified 
robotic exercise” explored thermal imaging 
together with facial action units, reporting a 77% 
classification accuracy for four distinct 
emotional states, though the authors noted 
limitations in sample diversity, demographic 
representation, and generalizability (Mohamed, 
2024). 
 
These multimodal approaches help offset the 
weaknesses inherent to single-modality 
systems for example, when one modality 
suffers from noise, occlusion, or 
cultural/physiological variability, the other can 
help stabilize inference. 
 
Applications in educational and real-world 
contexts; privacy and ethical considerations. 

Outside controlled lab environments, applying 
emotion‑recognition systems in educational 

settings introduces additional challenges. A 
recent systematic review (2024) of emotion 
recognition technologies noted growing 
interest in real-world applications in 
healthcare, home environments, and potentially 
educational institutions but stressed that many 
systems are still experimental and not yet 
adapted for dynamic, naturalistic environments 
(Guo, 2024). 
 
Researchers have raised valid concerns about 
privacy, data protection, and ethical deployment 
particularly in contexts involving minors (e.g., 
school settings). For example, a 2023 review 
highlighted the importance of data 
minimization, local (edge‑based) processing, 
informed consent, and safeguards against 
misuse when deploying emotion detection 
technologies in sensitive environments 
(Mamieva, 2023). Additionally, implementing 
such systems in schools especially public 
schools with limited resources presents 
challenges in terms of hardware affordability, 
environmental noise (thermal, acoustic), and 
cultural/linguistic diversity among students. 
 
METHODOLOGY 
 

This study employed an experimental 
developmental research design that involved 
the design, testing, and validation of an artificial 
intelligence (AI)-based emotional stress 
detection system. The developmental aspect 
focused on the creation of the AI model and 
software interface (developed using Python 
with TensorFlow and PyTorch frameworks and 
integrated into a PC-based interface with a PyQt 
front end), while the experimental component 
centered on testing the accuracy and 
responsiveness of the system within a 
controlled classroom environment. This design 
was appropriate since it allowed the 
researchers to develop and evaluate an 
innovative technological solution based on 
empirical data (Creswell & Creswell, 2018). 
 

Participants of the Study. The study participants 
consisted of student volunteers from a selected 
public secondary school. A total of 30 students 
participated, comprising 15 males and 15 
females, aged 13–16 years, and representing 
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grades 7 to 10. Participants were recruited 
using convenience sampling based on 
availability and willingness to participate. 
 
Inclusion criteria required students to be free 
from diagnosed medical or psychological 
conditions that could affect stress 
measurement, specifically anxiety disorders, 
cardiovascular conditions, or medications 
influencing autonomic function. To observe 
ethical conduct, participation was entirely 
voluntary, and parental consent was obtained 
for all minors prior to the study. Data privacy 
and confidentiality were maintained throughout 
the research in accordance with ethical 
guidelines for human subjects (National 
Commission for the Protection of Human 
Subjects of Biomedical and Behavioral 
Research, 1979). 
 
Instrumentation. The study utilized two primary 
instruments for data collection: 
 
Thermal Imaging Camera. Facial temperature 
variations were captured using a FLIR ONE Pro 
thermal camera with a resolution of 160 × 120 
pixels and a frame rate of 8.7 Hz, positioned 
approximately 0.5 meters from each 
participant’s face. The camera was calibrated 
prior to each session, and environmental 
factors such as room temperature (22–24°C), 
humidity, and lighting were controlled to 
minimize measurement variability. Thermal 
data were analyzed as physiological indicators 
of emotional stress, consistent with prior 
research (Khan et al., 2015). 
 
Directional Microphone. Voice samples were 
recorded using a Shure SM58 dynamic 
microphone connected to a laptop via an audio 
interface (Focusrite Scarlett 2i2). The 
microphone was positioned 30–40 cm from the 
participant’s mouth, capturing clear acoustic 
signals while minimizing background noise. 
Voice recordings were analyzed for acoustic 
features such as pitch, tone, intensity, and 
speech rate, which are established indicators of 
stress levels (Giannakakis et al., 2015). 
 

Both thermal and voice data were processed 
through the developed AI model and software 

interface, which utilized Python programming 
with TensorFlow and PyTorch frameworks, and 
a PyQt front-end for data visualization. The 
machine learning algorithm was trained to 
classify emotional states based on multimodal 
inputs, enabling real-time stress detection in a 
controlled classroom simulation. 
 
Data Collection Procedure. The data collection 
process was conducted in three defined phases: 
 
Phase 1: AI Model and Interface Development. In 
this phase, the AI model and software interface 
were developed. Initial training datasets were 
created using preliminary thermal and voice 
recordings from a small pilot group of students. 
The machine learning model was trained using 
Python with TensorFlow and PyTorch, and 
integrated into a PyQt-based interface for real-
time visualization of emotional states. 
 
Phase 2: Thermal and Voice Data Collection. 

This phase involved collecting thermal and 
voice data from 30 student volunteers in a 
simulated classroom setting. Participants were 
exposed to academic stressors, including short 
quizzes and oral recitations, designed to induce 
mild stress operationally defined as a transient 
increase in arousal without causing discomfort 
or harm, consistent with educational stress 
induction protocols (Pascoe et al., 2020). 
 
• Duration of activities: Each activity lasted 5 

minutes, with a 2-minute break between 
activities. 
 

• Order of activities: The sequence of tasks 
was randomized across participants to 
reduce order effects. 
 

• Environmental controls: Ambient 
temperature was maintained at 22–24°C, 
relative humidity at 40–60%, and fluorescent 
lighting at 500 lux to ensure data 
consistency. 

 
Instrumentation setup: The FLIR ONE Pro 
thermal camera was positioned 0.5 meters 
from participants, and the Shure SM58 
directional microphone was placed 30–40 cm 
from the mouth. 
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Phase 3: Testing and Validation. The final phase 
focused on system testing and validation. The AI 
system’s outputs were compared with 
participants’ self-reported stress levels using a 
10-item Likert-scale Student Stress 
Questionnaire (SSQ) adapted from Giannakakis 
et al. (2015). Participants rated their stress from 
1 (no stress) to 5 (high stress) immediately after 
each activity. The questionnaire has been 
validated in prior studies for assessing short-
term academic stress in adolescents. 
 
All sessions were recorded with controlled 
environmental conditions, ensuring consistency 
and reliability of both thermal and acoustic data. 
Data from this phase were used to evaluate the 
accuracy, responsiveness, and feasibility of the 
AI system in a simulated classroom 
environment. 
 
System Development Process. The AI system 
was developed using deep learning techniques 
within a supervised learning framework. 
Specifically, the following processes were 
done: 
 
Thermal image analysis was performed using a 
convolutional neural network (CNN, 
TensorFlow 2.13, Python 3.11), capable of 
extracting spatial features from facial thermal 
maps. 
 
Voice data interpretation was handled using a 
recurrent neural network (RNN) with long 
short-term memory units (LSTM, PyTorch 2.1, 
Python 3.11) to capture temporal patterns in 
acoustic features such as pitch, energy, and 
speech rate. 
 
The software interface was implemented in 
Python 3.11, integrated with TensorFlow 2.13, 
PyTorch 2.1, and OpenCV 4.8 libraries for real-
time image and voice processing. The system 
underwent iterative training and validation 
using collected multimodal datasets until it 
achieved satisfactory accuracy in classifying 
emotional stress patterns. 
Model architecture and hyperparameters were 
optimized based on recent affective computing 
research emphasizing multimodal deep 
learning for stress detection (Li, Chen, & Wang, 

2021; Padi, Sadjadi, & Sriram, 2022). This 
updated approach ensures consistency with the 
current state-of-the-art in AI-based emotion 
recognition, addressing limitations of earlier 
architectures and incorporating advances in 
multimodal deep learning for stress and 
emotion detection (Li, Chen, & Wang, 2021; Padi, 
Sadjadi, & Sriram, 2022). 
 
Validation and Testing. Validation of the AI 
system was performed by comparing its 
outputs with benchmark datasets and manually 
labeled emotional states from the study 
participants. Specifically, the DEAP dataset 
(Koelstra et al., 2012) and the RAVDESS speech-
emotion dataset (Livingstone & Russo, 2018) 
were used to benchmark the system’s ability to 
detect stress and other emotional states. 
 
The system’s performance was evaluated using 
standard metrics, including accuracy, precision, 
recall, and F1-score. 
 
Testing was conducted in a controlled 
classroom simulation, where the following 
variables were standardized to ensure reliable 
measurements: 
 
• Ambient temperature: 22–24°C 
• Relative humidity: 40–60% 
• Lighting: 500 lux fluorescent lighting 
• Distance from sensors: 0.5 meters for 

thermal camera; 30–40 cm for directional 
microphone 

 
Participants engaged in structured academic 
activities (quizzes, oral recitations) designed to 
induce mild stress, defined as a transient 
increase in physiological and behavioral 
arousal without causing discomfort. The AI 
system’s real-time outputs were then 
compared against self-reported stress scores 
using the validated Student Stress 
Questionnaire (Giannakakis et al., 2015). 
 

This validation and testing procedures 
assessed whether the model could accurately 
and reliably detect stress in a practical 
educational context, determining the system’s 
feasibility for real-time deployment in public 
school environments. 
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Data Analysis. Quantitative data collected from 
the AI system outputs and student self-reports 
were analyzed using both descriptive and 
inferential statistical methods. The AI system’s 
performance in detecting emotional stress was 
evaluated through confusion matrices, from 
which accuracy, precision, recall, and F1-score 
metrics were calculated. To complement the 
objective data generated by the AI system, the 
study utilized the Student Stress Questionnaire 
(SSQ) as a subjective measure of emotional 
stress. The SSQ is a researcher-made, ten-item 
Likert-scale instrument developed to assess 
students’ perceived stress levels in classroom 
contexts. The questionnaire underwent expert 
validation and pilot testing to establish content 
validity and reliability, yielding a 0.87 
Cronbach’s alpha coefficient indicative of good 
internal consistency. Responses were 
summarized using mean and standard deviation 
to represent students’ self-reported stress 
levels. To examine the relationship between the 
AI-predicted stress levels and the participants’ 
self-reported scores, a Pearson correlation 
analysis (r) was conducted. This analysis 
provided evidence of the convergent validity of 
the AI model by indicating the strength and 
direction of the association between predicted 
and subjective stress measures. All statistical 
analyses were performed using IBM SPSS 
Statistics version 28, with significance 
determined at p < 0.05. Collectively, these 
analyses enabled a rigorous evaluation of the 
accuracy, reliability, and validity of the 
developed AI system in a simulated classroom 
environment. 
 

Ethical Considerations. The study strictly 
adhered to established ethical research 
standards for human participants. All 
participants and their parents were fully 
informed about the study’s purpose, 
procedures, and potential risks, and informed 
consent was obtained prior to participation. To 
protect privacy, facial images and voice 
recordings were de-identified and anonymized, 
ensuring that no personal identifiers were 
stored. All digital data were securely encrypted 
and stored on password-protected devices. The 
research protocol received formal approval 
from the Iloilo Science and Technology 

University Institutional Review Board (IRB), 
guaranteeing compliance with relevant ethical 
guidelines and data protection regulations. 
 
RESULTS AND DISCUSSIONS 
 
The developed AI-based emotional stress 
detection system for students that integrates 
thermal facial imaging and voice signal analysis. 

AI model was developed using a Convolutional 
Neural Network (CNN) for thermal image 
classification and a Long Short-Term Memory 
(LSTM) network for voice sequence analysis. 
Thermal images were preprocessed by resizing 
to 128 × 128 pixels, normalizing pixel values, and 
applying Gaussian smoothing to reduce noise. 
Voice recordings were preprocessed by 
resampling to 16 kHz and extracting Mel-
Frequency Cepstral Coefficients (MFCCs) with 
13 coefficients per frame, a frame length of 25 
ms, and 10 ms overlap. 
 
The dataset was divided into 70% training, 15% 
validation, and 15% test sets, and the model was 
trained over 50 epochs with a batch size of 32, 
a learning rate of 0.001, and categorical cross-
entropy as the loss function. Five-fold cross-
validation was applied to ensure model 
generalizability, and hyperparameters were 
optimized using grid search. 
 
The system was implemented on a PC with Intel 
Core i7-12700K CPU, 16 GB RAM, and NVIDIA RTX 
3060 GPU, running Python 3.11, TensorFlow 2.13, 
PyTorch 2.1, and OpenCV 4.8. As shown in Figure 
2, the software interface provided a real-time, 
PC-based edge-computing environment for 
stress detection without reliance on cloud. 
 

 
Figure 2 
Developed AI Model and Software Interface 
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During the testing, the model achieved an 
average processing latency of 1.8 seconds per 
prediction, confirming its feasibility for 
classroom applications. The graphical user 
interface (GUI) displayed real-time thermal 
images, extracted voice features, and predicted 
emotional states. 
 
The collected and preprocessed thermal facial 
images and voice recordings from students as 
input data for AI-based emotional stress 

detection and stress-level estimation. Table 1 
presents the descriptive statistics of the 
physiological and acoustic parameters 
collected from 30 voluntary student participants 
during the simulated classroom experiment. 
The measured parameters included forehead 
and periorbital temperatures, obtained using 
thermal imaging, as well as speech pitch, 
speech rate, and Mel-Frequency Cepstral 
Coefficient (MFCC) energy values, which are key 
indicators of psychophysiological arousal. 
Facial thermography has been shown to provide 
reliable, non-invasive metrics for stress 
detection, particularly when combined with 
other physiological signals (Garbey et al., 2017). 
 
The mean forehead temperature was M = 
36.58°C, SD = 0.72, and the mean periorbital 
temperature was M = 36.32°C, SD = 0.69, both 
within normal physiological ranges for adults 
(35.5–37.5°C; Pandolfi et al., 2020). These values 
reflected subtle thermal changes associated 
with emotional or cognitive stress responses. 
Thermal variations in the forehead and 
periorbital regions have been previously 
reported as reliable indicators of stress in 
academic settings (Pavlidis & Levine, 2022). 
 
The mean speech pitch of participants was M = 
228.45 Hz, SD = 38.10, and the mean speech rate 
was M = 123.60 words per minute, SD = 18.43. 
These acoustic features showed individual 
differences in vocal expression, which often 
correlate with emotional and stress-related 
states. Consistent with previous research, 
increased stress levels may lead to higher pitch 
variability and altered speech rate due to 
changes in vocal cord tension and breathing 
patterns (Sondhi et al., 2020). The MFCC energy 
coefficient, a spectral feature commonly used in 

voice-based emotion detection, had a mean of 
M = 0.64, SD = 0.10, indicating relatively stable 
energy distribution across speech samples. 
MFCC parameters have been shown to improve 
classification performance in multimodal 
emotion recognition systems when combined 
with thermal and visual features (Li et al., 2022). 
 
Table 1 
Descriptive Statistics of Physiological and Acoustic 
Features (n = 30) 

 
 
The coefficient of variation (CV) for speech pitch 
was approximately 16.7%, suggesting moderate 
variability in participants’ vocal responses. This 
variability may reflect individual differences in 
emotional expressiveness, which can influence 
stress detection accuracy. 
 
A preliminary analysis of the data indicated that 
all variables were approximately normally 
distributed based on Shapiro–Wilk tests (p > 
.05), with no extreme outliers detected. A 
correlation analysis revealed moderate positive 
correlations between speech pitch and MFCC 
energy (r = 0.42, p < .05), and weak negative 
correlations between periorbital temperature 
and speech rate (r = −0.28, p = .12), suggesting 
some interdependence between physiological 
and acoustic indicators. Gender differences in 
thermal and acoustic parameters were also 
explored, but no significant differences were 
found (p > .05). 
 
Overall, these results confirm that the thermal 
and voice data collected were within expected 
physiological and acoustic ranges, indicating 
reliable sensor calibration and proper data 
collection protocols. The consistency and 
quality of the dataset provide a strong 
foundation for subsequent AI model training and 
validation, supporting the feasibility of a 
multimodal, non-contact stress detection 
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system in educational environments (Villani et 
al., 2021). 
 
The performance of the AI-based emotional 
stress detection system within a simulated 

classroom environment. Table 2 presents the 
performance metrics of the developed stress 
detection models across three configurations: 
thermal imaging data analyzed via a 
Convolutional Neural Network (CNN), voice data 
processed with a Long Short-Term Memory 
(LSTM) model, and a combined multimodal 
fusion model integrating both inputs. The 
evaluation metrics included accuracy, precision, 
recall, F1-score, specificity, area under the 
receiver operating characteristic curve (AUC-
ROC), latency, and confidence intervals, which 
collectively assess the models’ reliability, 
responsiveness, and feasibility for classroom 
implementation. 
 
The combined multimodal fusion model 
achieved the highest accuracy (M = 91.4%, 95% CI 
[88.2, 94.6]), outperforming the thermal-based 
CNN model (M = 87.6%, 95% CI [83.9, 91.3]) and 
the voice-based LSTM model (M = 85.9%, 95% CI 
[82.0, 89.8]). This result demonstrates that 
integrating thermal and acoustic features 
significantly enhances the system’s stress 
classification performance. Multimodal fusion is 
known to capture complementary signals from 
multiple physiological and behavioral sources, 
reducing ambiguity and improving model 
generalization (Zhao et al., 2020). 
 
In terms of precision, recall, and F1-score, the 
multimodal model again outperformed the 
single-modality models, yielding values of 0.89, 
0.92, and 0.90, respectively. These metrics 
indicate balanced performance in identifying 
both stressed and non-stressed states. The 
thermal CNN achieved precision = 0.86, recall = 
0.88, F1-score = 0.87, whereas the voice LSTM 
achieved precision = 0.84, recall = 0.86, F1-score 
= 0.85. Specificity values were 0.88 (thermal), 
0.85 (voice), and 0.91 (multimodal), confirming 
the model’s ability to correctly identify non-
stressed states. The AUC-ROC values were 0.91, 
0.88, and 0.94 for thermal, voice, and 
multimodal models, respectively, reflecting 
strong discriminative power. These findings 

align with Li et al. (2022), who highlighted that 
deep learning architectures across modalities 
optimize emotion classification through 
feature-level synergy. Similarly, Pavlidis and 
Levine (2022) emphasized that combining 
thermal facial imaging with voice cues provides 
a more holistic representation of 
psychophysiological stress responses than 
single modalities. 
 
Model responsiveness, measured as latency, 
ranged between 1.6 and 1.8 seconds across all 
models, suggesting that real-time stress 
detection is feasible under classroom 
conditions. This latency falls within acceptable 
limits for live monitoring applications (Wang et 
al., 2021), indicating that the system can provide 
timely feedback without disrupting ongoing 
classroom activities. 
 
Error analysis revealed that the multimodal 
model reduced misclassifications observed in 
single-modality models, particularly in 
participants exhibiting subtle stress responses. 
Confusion matrices indicated fewer false 
positives and false negatives for the multimodal 
system. Learning curves also demonstrated 
stable convergence during training, suggesting 
adequate generalization without overfitting. 
 
Table 2 
Performance Metrics of Stress Detection Models (n = 30) 

 
 
Correlation between AI Stress Detection and 

Self-Reported Stress Levels. Table 3 presents 
the Pearson correlation coefficients between 
AI-generated stress indices (thermal, voice, 
and combined multimodal) and participants’ 
self-reported stress levels. The analysis aimed 
to assess the degree of association between the 
system’s computed stress levels and 
participants’ subjective perceptions of stress. 
The sample consisted of n = 30 participants. 
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Table 3 
Pearson Correlation between AI Stress Detection and 
Self-Reported Stress Levels (n = 30) 

 
 
The results indicated strong and statistically 
significant positive correlations across all 
modalities. Specifically, the thermal index 
correlated with self-reported stress at r = 0.84, 
p < .001, and the voice index at r = 0.81, p < .001. 
The combined multimodal index achieved the 
highest correlation, r = 0.86, p < .001, suggesting 
that integrating thermal and voice features 
enhanced the predictive validity of the system 
and reduced potential misclassifications 
compared to single-modality models. 
 
Based on Cohen’s (1988) guidelines for 
interpreting correlation strength: 
 
• 0.10–0.29: Small 
• 0.30–0.49: Medium 
• 0.50–1.0: Large 
 
All observed correlations fall within the large 
effect size range, indicating strong alignment 
between AI-generated stress indices and 
participants’ subjective stress ratings. 
 
Confidence intervals (95%) were calculated to 
assess the precision of these correlations: 
 
• Thermal index: 0.70–0.92 
• Voice index: 0.66–0.90 
• Combined index: 0.72–0.93 
 
The convergence between objective system 
outputs and subjective reports validates the 
practical reliability and psychometric 
consistency of the AI model. These findings 
demonstrate that the system effectively mirrors 
human-perceived stress states, providing a 
robust foundation for non-invasive stress 
monitoring in educational settings. Multimodal 
integration clearly offered superior 
performance, reinforcing its potential for 

accurate, context-sensitive, and ethically 
deployable stress detection in public school. 
 
Conclusion. This study aimed to develop and 
evaluate a PC-based, edge-computing artificial 
intelligence (AI) system that utilized thermal 
imaging and voice analysis to detect emotional 
stress among students in a non-invasive, real-
time manner. The research addressed four 
objectives: the development of the AI model and 
software interface, collection of thermal and 
voice data from respondents, testing and 
validation in a simulated classroom 
environment, and evaluation of the system’s 
accuracy, responsiveness, and feasibility for 
public school implementation. The AI model and 
software interface were successfully developed 
and integrated into a local computing system 
capable of performing real-time stress 
detection without cloud dependency. The system 
employed a Convolutional Neural Network 
(CNN) for thermal image classification and a 
Long Short-Term Memory (LSTM) network for 
voice sequence analysis. This architecture 
enabled efficient multimodal data processing 
with an average latency of 1.8 seconds, 
demonstrating operational feasibility for 
classroom applications while maintaining 
privacy and ethical compliance. 
 
Thermal and acoustic data were collected from 
thirty voluntary student participants, 
establishing reliable baseline measurements. 
Physiological parameters, including forehead 
and periorbital temperatures, remained within 
normal ranges and reflected subtle but 
measurable variations associated with 
emotional stress. Acoustic parameters, 
including speech pitch, speech rate, and MFCC 
energy coefficients, demonstrated patterns 
consistent with psychophysiological stress 
indicators reported in previous studies. These 
results confirm that sensor calibration and data 
acquisition were robust, providing reliable 
inputs for AI model training and validation. 
 
Testing and validation revealed that the 
multimodal fusion model outperformed single-
modality systems, achieving an accuracy of 
91.4%, precision of 0.89, recall of 0.92, and F1-
score of 0.90. This confirmed that integrating 
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thermal and acoustic features significantly 
improved stress detection by capturing 
complementary emotional cues. Correlation 
analysis further demonstrated strong and 
statistically significant alignment between AI-
generated stress indices and participants’ self-
reported stress levels, with thermal index (r = 
0.84), voice index (r = 0.81), and combined 
multimodal index (r = 0.86, all p < .001). Based on 
Cohen’s (1988) guidelines, all correlations 
represent a large effect size, indicating that the 
system’s classifications closely reflected 
subjective human experiences and validated its 
psychometric reliability and practical utility. 
 
The study carries both theoretical and practical 
implications. Theoretically, it reinforces the 
effectiveness of multimodal deep learning 
frameworks in psychophysiological emotion 
recognition, supporting the notion that 
combining complementary physiological and 
behavioral signals enhances predictive validity. 
Practically, the system provides educators and 
policymakers with a privacy-conscious, real-
time tool to monitor student stress, enabling 
early interventions and adaptive learning 
strategies. The edge-computing design 
addresses concerns regarding data privacy and 
latency, ensuring suitability for deployment in 
public school settings. 
 
Despite these positive outcomes, the study has 
several limitations. The small sample size (n = 
30) from a single school limits generalizability. 
Stress was measured under simulated 
classroom conditions, which may not fully 
replicate real academic stressors, and data 
were collected in a single short-term session 
without longitudinal tracking. The system 
focused solely on stress detection, excluding 
other emotional states, and its performance 
under varying environmental conditions was 
not extensively tested. Additionally, AI 
predictions were not validated against clinical 
measures or human expert ratings, and the 
participant group was limited in age and 
cultural diversity, potentially affecting 
generalizability. 
 
Future research should address these 
limitations by conducting multi-site studies with 

larger, more diverse samples (n > 50), 
performing longitudinal assessments, and 
extending the model to detect a broader range 
of emotional states. Environmental robustness 
testing, clinical validation, and integration into 
practical educational interventions are also 
recommended to enhance system utility and 
generalizability. 
 
In conclusion, the study demonstrated that the 
developed AI-based multimodal stress 
detection system successfully met its 
objectives. The edge-computing approach 
enabled real-time, non-invasive, and privacy-
conscious monitoring of student stress, 
combining technological accuracy with 
operational feasibility. Strong correlations with 
self-reported stress levels confirmed the 
system’s practical reliability and psychometric 
validity. While limitations exist, the research 
establishes a solid foundation for the 
implementation of AI-assisted emotional 
monitoring tools in educational environments, 
supporting early interventions and promoting 
student well-being through data-driven 
psychological insights. 
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