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Abstract

This study examined the development and evaluation of an artificial intelligence (Al)-based system designed to
detect emotional stress among students using thermal imaging and voice analysis. The primary goal was to
develop a user-friendly software interface capable of real-time processing within a personal computer
environment. Thermal and voice data were collected from 30 student participants in a simulated classroom
setting to train and validate the Al model. The system integrated convolutional neural networks (CNN) for
thermal classification and recurrent neural networks for voice sequence analysis to interpret physiological and
acoustic indicators of stress. Results showed that the combination of thermal and voice inputs significantly
improved the accuracy and reliability of emotional state recognition compared to single-input systems. The
multimodal fusion model achieved 91.4% accuracy in classifying stress states, with a strong correlation between
Al-generated and self-reported stress levels (r = 0.86, p < .001). The Al model also demonstrated consistent
responsiveness and operational stability, supporting its potential application in classroom monitoring. Overall,
the integration of thermal imaging and voice analysis presents a promising tool for helping educators
understand students’ emotional well-being and enhance the learning environment.

Keywords: Artificial Intelligence (Al), thermal imaging, voice analysis, emotional stress detection, educational
technology, multimodal fusion
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INTRODUCTION intrusive, or impractical for continuous use in

typical classroom environments (Villani et al.,

Academic institutions worldwide have reported
rising levels of stress among students, with
prevalence rates estimated between 30% and
50% across various educational settings
(Pascoe et al., 2020; Shah et al., 2021). Sustained
emotional stress has been shown to impair
concentration, reduce memory retention,
weaken physical health, and diminish overall
academic performance. Despite these well-
documented effects, student stress frequently
goes undetected due to the absence of real-
time and non-invasive monitoring systems.
Existing assessment approaches such as self-
report surveys, psychological questionnaires,
and wearable biosensors are often subjective,

2021). This highlights the need for innovative,
unobtrusive technologies capable of detecting
emotional stress as it occurs.

Over the past decade, advances in artificial
intelligence (Al) have expanded the possibilities
for emotion recognition using non-contact
modalities, including facial expression analysis
and voice modulation detection (Li et al., 2022).
However, many existing systems depend on
visible-light cameras or cloud-based
processing, which raises important concerns
regarding privacy protection, data latency, and
the ethical implementation of such technologies
in academic institutions (Roshani et al., 2023).
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Thermal imaging has emerged as a promising
alternative. Unlike traditional cameras, thermal
imagers detect infrared radiation, providing a
visual representation of skin surface
temperature, a key indicator of emotional
arousal or stress (loannou et al., 2014). Studies
in psychophysiology have shown that facial
temperature distribution changes in response
to stress, especially in areas such as the
forehead, periorbital, and nose regions (Garbey
et al,, 2017; Pavlidis & Levine, 2022). Similarly,
stress alters vocal features such as pitch,
intensity, and cadence, which can be detected
through audio signal processing (Yildirim et al,,
2011; Sondhi et al., 2020).

Despite this potential, existing Al systems that
incorporate thermal or vocal data for stress
detection are typically high-cost, cloud-based,
or designed for controlled laboratory conditions
(Wang et al., 2021). This gap points to a pressing
need for a more accessible, privacy-conscious
solution that can function offline and be
deployed easily in classrooms.

This study fills this gap by developing a PC-
based, edge-computing Al system that
integrates thermal imaging and voice analysis
to detect emotional stress in students. The
proposed solution is designed to be low-cost,
real-time, and non-intrusive, offering
educators and mental health professionals a
practical tool for proactively monitoring student
well-being. Ultimately, this approach aims to
deliver a scalable and privacy-preserving
method to identify emotional stress, thereby
supporting improved academic performance
and psychological health among students.

Research Objectives. This study aimed to
determine the following:

1. To design and develop an Al-based
emotional stress detection system for
students that integrates thermal facial
imaging and voice signal analysis.

2. To collect and preprocess thermal facial
images and voice recordings from students
as input data for Al-based emotional stress
detection and stress-level estimation.
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3. To test and validate the performance of the
Al-based emotional stress detection system
within a simulated classroom environment.

4. To determine the relationship between Al-
detected emotional stress levels and
students’ self-reported stress levels.

Research Paradigm. This study was anchored
on the integration of psychophysiological
theories and Al (artificial intelligence)
techniques to detect emotional stress among
students through thermal imaging and voice
analysis. Grounded in Cognitive Appraisal
Theory and Affective Computing Theory, the
framework was built on the premise that
emotional stress is manifested through
measurable physiological and behavioral
changes such as variations in facial
temperature and vocal tone, which could be
captured, processed, and interpreted using
computational intelligence (Scherer, 2005;
Picard, 2022).

Input Process Output
Data Data Processing Al-Based
Acquisition and Feature Extraction Classification
’ Y
Infrared Thermal Microphone
Camera
L | STRESSED/NOT STRESSED

Detecting Emotional Stress
in Students

Edge-Based Al System for |

Figure 1
The conceptual design depicting the relationship between
variables.

The conceptual framework (Figure 1) of the
study was structured using the Input-Process-
Output (IPO) model, which provided a
systematic flow from data collection to system
output, ensuring a logical structure for
developing and validating the proposed Al-
based stress detection system (Pavlidis &
Levine, 2022).

The input phase consisted of two main sources
of data: thermal imaging and voice recordings.
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Infrared thermal cameras were used to capture
heat signatures from critical facial regions such
as the forehead, nose, and periorbital area (the
region surrounding the eyes). These
temperature variations were considered
physiological indicators of emotional arousal
and stress, as previous psychophysiological
studies have established that facial skin
temperature fluctuates in response to stress or
anxiety. Simultaneously, audio samples were
collected from student participants during both
relaxed and stress-inducing classroom
activities. Changes in pitch, tone, and speech
rate were interpreted as behavioral cues
associated with emotional strain. Together,
these two input modalities provided a
comprehensive dataset representing both the
physiological and behavioral dimensions of
student stress.

The process phase involved a series of
technical operations designed to transform the
collected data into meaningful insights. Initially,
the raw thermal and voice data underwent
preprocessing and feature extraction. For
thermal images, image enhancement and
segmentation techniques were applied to
extract temperature distribution patterns and
regions of interest. For voice data, acoustic
analysis was conducted to obtain measurable
parameters such as pitch, Mel-Frequency
Cepstral Coefficients (MFCCs), and speech
cadence. These extracted features were then
used to train Al models specifically,
Convolutional Neural Networks (CNNs) for
thermal imaging and Long Short-Term Memory
(LSTM) networks for voice analysis. The outputs
from both Al models were fused through a
classification algorithm that analyzed and
interpreted the combined data to determine
whether a student was “stressed” or “not
stressed.” This process ensured that both
physiological and behavioral indicators were
jointly assessed to enhance the accuracy and
reliability of stress detection.

The output of this framework was an Al-based
emotional stress detection system integrated
into a user-friendly software interface. The
system operated in real time and provided
immediate visual feedback regarding students’
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stress levels, enabling educators and mental
health professionals to monitor emotional well-
being during classroom activities. It was
designed to be low cost by using affordable
sensors and open-source Al frameworks, non-
invasive by eliminating the need for wearable
devices, and privacy conscious by implementing
local edge-computing instead of cloud-based
processing. Furthermore, the system’s
structure and functionality were tailored to
ensure its feasibility for use in public school
environments, supporting large-scale
deployment without compromising data
security or ethical standards.

Overall, this conceptual framework guided the
development of a practical, affordable, and
ethical Al-driven tool that enhanced emotional
awareness and promoted proactive well-being
strategies within educational settings. It
demonstrated how the combination of
psychophysiological theory and Al could be
applied to develop an innovative, non-contact
system capable of detecting emotional stress in
real time, thereby contributing and promoting a
more safer and more supportive learning
environment.

LITERATURE REVIEW

Theoretical foundations of emotion and stress.
Emotion and stress detection research has
matured substantially over recent decades.
Early conceptualizations such as that of
Scherer (2005) described emotions as complex,
multi-component phenomena involving
synchronized physiological, behavioral, and
cognitive processes triggered by internal or
external stimuli. These emotional states
influence both mental functioning and physical
responses. While the work of Picard (2022) in
the field of affective computing emphasized that
emotional responses can be quantified and
interpreted by computational systems, offering
opportunities for precise, objective analysis of
human affective experiences.

These foundational definitions have provided
the conceptual groundwork for more recent
efforts to detect and monitor stress and
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Stress in educational settings and need for
objective detection. Student stress represents
a major concern in educational psychology.
According to Pascoe et al. (2020), academic
pressure, social expectations, and heavy
workloads are among the prime sources of
emotional fatigue and reduced academic
performance. Chronic or prolonged stress
impairs concentration, weakens memory, and
negatively affects overall mental health
highlighting the urgency of early detection and
intervention in academic environments.

Traditional stress-assessment methods such
as self-report questionnaires or wearable
biosensors are often criticized for their
subjectivity, invasiveness, or impracticality in
everyday classroom contexts. Consequently,
research interest has shifted toward more
objective, non-contact, and real-time detection
methods.

Non-contact methods: Thermal imaging. Non-
contact psychophysiological methods, and in
particular thermal infrared imaging (TIRI), have
gained traction as promising alternatives for
stress and emotion recognition. Early
investigations (e.g., loannou et al., 2014; Garbey
et al.,, 2017) demonstrated that skin temperature
changes particularly around facial regions such
as the periorbital area, nose, and forehead
correlate strongly with stress and arousal
levels.

More recently, the promise of TIRl has been
enhanced by machine learning and
deep-learning techniques. For instance, a 2025
study published in Sensors introduced a
machine-learning-based facial thermal image
analysis system capable of estimating dynamic
emotional arousal using pixel-level thermal
data a significant step beyond earlier region-of-
interest (ROI) methods. The authors showed
that models such as ResNet-34 outperform
classical linear regression or ROIl-based
approaches in mapping facial temperature
changes to self-reported emotional arousal,
suggesting that thermal imaging can serve as a
high-granularity, noninvasive method for
continuous emotion sensing (Tang, 2025).
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Similarly, other recent works (e.g., a 2025 study
exploring low-cost thermal cameras with ViT
and CNN architectures) point to the growing
feasibility of affordable and accessible
thermal-based emotion recognition (Black &
Shakir, 2025). However, limitations persist.
Environmental factors such as ambient
temperature, humidity, and background
conditions can distort thermal readings and
affect measurement accuracy, as reported in
the review of Pavlidis and Levine (2022) of
thermal facial imaging methods.

Moreover, some studies caution about
generalizability: differences in skin type,
ethnicity, age, or physiological baseline
temperature may alter thermal responses, and
many of the thermal-imaging studies have
relatively small or homogeneous samples. This
calls for more diverse, much wider and larger-
scale studies to validate findings across
populations.

Voice (speech) analysis for emotion and stress
detection. Parallel to thermal imaging, voice
and speech analysis has also been explored as
a non-contact modality for emotional stress
detection. Variations in speech features — such
as pitch, energy, speech rate, and spectral
characteristics — have been shown to fluctuate
under stress or emotional arousal. For
instance, Sondhi et al. (2020) demonstrated that
such vocal changes can be used to classify
emotional states via machine learning
algorithms.

More recent work continues to strengthen the
voice modality for emotion recognition. A 2023
study by Wang, Gu, Yin, Han, Zhang, Wang, Li,
and Quan proposed a “multimodal transformer-
augmented fusion” method for speech emotion
recognition that improved performance by
capturing fine-grained interactions among
different modalities (e.g., speech + other
channels) using hybrid fusion strategies (Wang
et al.,, 2023).

Nevertheless, voice-based methods face
challenges especially when deployed among
diverse populations because language, accent,
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and cultural differences can significantly affect
acoustic features, reducing cross-population
generalizability. This variability remains a
critical limitation if voice-based systems are to
work reliably in multilingual, multicultural
educational settings.

Multimodal approaches: Integrating thermal,
voice, and other modalities. Given the
limitations of unimodal systems (thermal-only
or voice-only), recent research has
increasingly adopted multimodal emotion
recognition (MER), combining multiple data
sources to improve robustness and accuracy. A
2023-2024 review on multimodal emotion
recognition noted this shift, summarizing how
merging physiological signals, facial/thermal
imaging, speech, and sometimes text cues yield
more resilient emotion detection systems (Guo,
2024). For instance, a 2024 study in Multimedia
Tools and Applications fused visual (face) and
auditory (speech) signals using LSTM-based
temporal modeling and reported state-of-the-
art accuracies across several public datasets,
demonstrating the value of temporal dynamics
in continuous emotion recognition (Salas-
Caceres, 2025).

Moreover, there are recent studies combining
thermal imaging with other modalities. A 2023
article titled “Multi-modal affect detection using
thermal and optical imaging in a gamified
robotic exercise” explored thermal imaging
together with facial action units, reporting a 77%
classification accuracy for four distinct
emotional states, though the authors noted
limitations in sample diversity, demographic
representation, and generalizability (Mohamed,
2024).

These multimodal approaches help offset the
weaknesses inherent to single-modality
systems for example, when one modality
suffers from noise, occlusion, or
cultural/physiological variability, the other can
help stabilize inference.

Applications in educational and real-world
contexts; privacy and ethical considerations.

Outside controlled lab environments, applying
emotion-recognition systems in educational
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settings introduces additional challenges. A
recent systematic review (2024) of emotion
recognition technologies noted growing
interest in real-world applications in
healthcare, home environments, and potentially
educational institutions but stressed that many
systems are still experimental and not yet
adapted for dynamic, naturalistic environments
(Guo, 2024).

Researchers have raised valid concerns about
privacy, data protection, and ethical deployment
particularly in contexts involving minors (e.g.,
school settings). For example, a 2023 review
highlighted the  importance of data
minimization, local (edge-based) processing,
informed consent, and safeguards against
misuse when deploying emotion detection
technologies in sensitive environments
(Mamieva, 2023). Additionally, implementing
such systems in schools especially public
schools with limited resources presents
challenges in terms of hardware affordability,
environmental noise (thermal, acoustic), and
cultural/linguistic diversity among students.

METHODOLOGY

This study employed an experimental
developmental research design that involved
the design, testing, and validation of an artificial
intelligence  (Al)-based emotional stress
detection system. The developmental aspect
focused on the creation of the Al model and
software interface (developed using Python
with TensorFlow and PyTorch frameworks and
integrated into a PC-based interface with a PyQt
front end), while the experimental component
centered on testing the accuracy and
responsiveness of the system within a
controlled classroom environment. This design
was appropriate since it allowed the
researchers to develop and evaluate an
innovative technological solution based on
empirical data (Creswell & Creswell, 2018).

Participants of the Study. The study participants
consisted of student volunteers from a selected
public secondary school. A total of 30 students
participated, comprising 15 males and 15
females, aged 13-16 years, and representing
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grades 7 to 10. Participants were recruited
using convenience sampling based on
availability and willingness to participate.

Inclusion criteria required students to be free
from diagnosed medical or psychological
conditions  that could affect stress
measurement, specifically anxiety disorders,
cardiovascular conditions, or medications
influencing autonomic function. To observe
ethical conduct, participation was entirely
voluntary, and parental consent was obtained
for all minors prior to the study. Data privacy
and confidentiality were maintained throughout
the research in accordance with ethical
guidelines for human subjects (National
Commission for the Protection of Human
Subjects of Biomedical and Behavioral
Research, 1979).

Instrumentation. The study utilized two primary
instruments for data collection:

Thermal Imaging Camera. Facial temperature
variations were captured using a FLIR ONE Pro
thermal camera with a resolution of 160 x 120
pixels and a frame rate of 8.7 Hz, positioned
approximately 0.5 meters from each
participant’s face. The camera was calibrated
prior to each session, and environmental
factors such as room temperature (22-24°C),
humidity, and lighting were controlled to
minimize measurement variability. Thermal
data were analyzed as physiological indicators
of emotional stress, consistent with prior
research (Khan et al., 2015).

Directional Microphone. Voice samples were
recorded using a Shure SM58 dynamic
microphone connected to a laptop via an audio
interface  (Focusrite Scarlett 2i2). The
microphone was positioned 30-40 cm from the
participant’s mouth, capturing clear acoustic
signals while minimizing background noise.
Voice recordings were analyzed for acoustic
features such as pitch, tone, intensity, and
speech rate, which are established indicators of
stress levels (Giannakakis et al., 2015).

Both thermal and voice data were processed
through the developed Al model and software
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interface, which utilized Python programming
with TensorFlow and PyTorch frameworks, and
a PyQt front-end for data visualization. The
machine learning algorithm was trained to
classify emotional states based on multimodal
inputs, enabling real-time stress detection in a
controlled classroom simulation.

Data Collection Procedure. The data collection
process was conducted in three defined phases:

Phase 1: Al Model and Interface Development. In
this phase, the Al model and software interface
were developed. Initial training datasets were
created using preliminary thermal and voice
recordings from a small pilot group of students.
The machine learning model was trained using
Python with TensorFlow and PyTorch, and
integrated into a PyQt-based interface for real-
time visualization of emotional states.

Phase 2: Thermal and Voice Data Collection.
This phase involved collecting thermal and
voice data from 30 student volunteers in a
simulated classroom setting. Participants were
exposed to academic stressors, including short
quizzes and oral recitations, designed to induce
mild stress operationally defined as a transient
increase in arousal without causing discomfort
or harm, consistent with educational stress
induction protocols (Pascoe et al., 2020).

e Duration of activities: Each activity lasted 5
minutes, with a 2-minute break between
activities.

e Order of activities: The sequence of tasks
was randomized across participants to
reduce order effects.

e Environmental controls: Ambient
temperature was maintained at 22-24°C,
relative humidity at 40-60%, and fluorescent
lighting at 500 lux to ensure data
consistency.

Instrumentation setup: The FLIR ONE Pro
thermal camera was positioned 0.5 meters
from participants, and the Shure SM58
directional microphone was placed 30-40 cm
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Phase 3: Testing and Validation. The final phase
focused on system testing and validation. The Al
system’s outputs were compared with
participants’ self-reported stress levels using a
10-item Likert-scale Student Stress
Questionnaire (SSQ) adapted from Giannakakis
et al. (2015). Participants rated their stress from
1(no stress) to 5 (high stress) immediately after
each activity. The questionnaire has been
validated in prior studies for assessing short-
term academic stress in adolescents.

All sessions were recorded with controlled
environmental conditions, ensuring consistency
and reliability of both thermal and acoustic data.
Data from this phase were used to evaluate the
accuracy, responsiveness, and feasibility of the
Al system in a simulated classroom
environment.

System Development Process. The Al system
was developed using deep learning techniques
within a supervised learning framework.
Specifically, the following processes were
done:

Thermal image analysis was performed using a
convolutional neural network (CNN,
TensorFlow 213, Python 3.11), capable of
extracting spatial features from facial thermal
maps.

Voice data interpretation was handled using a
recurrent neural network (RNN) with long
short-term memory units (LSTM, PyTorch 2.1,
Python 3.11) to capture temporal patterns in
acoustic features such as pitch, energy, and
speech rate.

The software interface was implemented in
Python 3.11, integrated with TensorFlow 2.13,
PyTorch 2.1, and OpenCV 4.8 libraries for real-
time image and voice processing. The system
underwent iterative training and validation
using collected multimodal datasets until it
achieved satisfactory accuracy in classifying
emotional stress patterns.

Model architecture and hyperparameters were
optimized based on recent affective computing
research emphasizing multimodal deep
learning for stress detection (Li, Chen, & Wang,
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2021; Padi, Sadjadi, & Sriram, 2022). This
updated approach ensures consistency with the
current state-of-the-art in Al-based emotion
recognition, addressing limitations of earlier
architectures and incorporating advances in
multimodal deep learning for stress and
emotion detection (Li, Chen, & Wang, 2021; Padi,
Sadjadi, & Sriram, 2022).

Validation and Testing. Validation of the Al
system was performed by comparing its
outputs with benchmark datasets and manually
labeled emotional states from the study
participants. Specifically, the DEAP dataset
(Koelstra et al., 2012) and the RAVDESS speech-
emotion dataset (Livingstone & Russo, 2018)
were used to benchmark the system’s ability to
detect stress and other emotional states.

The system'’s performance was evaluated using
standard metrics, including accuracy, precision,
recall, and F1-score.

Testing was conducted in a controlled
classroom simulation, where the following
variables were standardized to ensure reliable
measurements:

Ambient temperature: 22-24°C

Relative humidity: 40-60%

Lighting: 500 lux fluorescent lighting
Distance from sensors: 0.5 meters for
thermal camera; 30-40 cm for directional
microphone

Participants engaged in structured academic
activities (quizzes, oral recitations) designed to
induce mild stress, defined as a transient
increase in physiological and behavioral
arousal without causing discomfort. The Al
system’s real-time outputs were then
compared against self-reported stress scores
using the validated Student  Stress
Questionnaire (Giannakakis et al., 2015).

This validation and testing procedures
assessed whether the model could accurately
and reliably detect stress in a practical
educational context, determining the system’s
feasibility for real-time deployment in public
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Data Analysis. Quantitative data collected from
the Al system outputs and student self-reports
were analyzed using both descriptive and
inferential statistical methods. The Al system’s
performance in detecting emotional stress was
evaluated through confusion matrices, from
which accuracy, precision, recall, and F1-score
metrics were calculated. To complement the
objective data generated by the Al system, the
study utilized the Student Stress Questionnaire
(55SQ) as a subjective measure of emotional
stress. The SSQ is a researcher-made, ten-item
Likert-scale instrument developed to assess
students’ perceived stress levels in classroom
contexts. The questionnaire underwent expert
validation and pilot testing to establish content
validity and reliability, vyielding a 0.87
Cronbach’s alpha coefficient indicative of good
internal  consistency. Responses  were
summarized using mean and standard deviation
to represent students’ self-reported stress
levels. To examine the relationship between the
Al-predicted stress levels and the participants’
self-reported scores, a Pearson correlation
analysis (r) was conducted. This analysis
provided evidence of the convergent validity of
the Al model by indicating the strength and
direction of the association between predicted
and subjective stress measures. All statistical
analyses were performed using IBM SPSS
Statistics version 28, with significance
determined at p < 0.05. Collectively, these
analyses enabled a rigorous evaluation of the
accuracy, reliability, and validity of the
developed Al system in a simulated classroom
environment.

Ethical Considerations. The study strictly
adhered to established ethical research
standards for human participants. All
participants and their parents were fully
informed  about the study’'s purpose,
procedures, and potential risks, and informed
consent was obtained prior to participation. To
protect privacy, facial images and voice
recordings were de-identified and anonymized,
ensuring that no personal identifiers were
stored. All digital data were securely encrypted
and stored on password-protected devices. The
research protocol received formal approval
from the Iloilo Science and Technology
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University Institutional Review Board (IRB),
guaranteeing compliance with relevant ethical
guidelines and data protection regulations.

RESULTS AND DISCUSSIONS

The developed Al-based emotional stress
detection system for students that integrates
thermal facial imaging and voice signal analysis.

Al model was developed using a Convolutional
Neural Network (CNN) for thermal image
classification and a Long Short-Term Memory
(LSTM) network for voice sequence analysis.
Thermal images were preprocessed by resizing
to 128 x 128 pixels, normalizing pixel values, and
applying Gaussian smoothing to reduce noise.
Voice recordings were preprocessed by
resampling to 16 kHz and extracting Mel-
Frequency Cepstral Coefficients (MFCCs) with
13 coefficients per frame, a frame length of 25
ms, and 10 ms overlap.

The dataset was divided into 70% training, 15%
validation, and 15% test sets, and the model was
trained over 50 epochs with a batch size of 32,
a learning rate of 0.001, and categorical cross-
entropy as the loss function. Five-fold cross-
validation was applied to ensure model
generalizability, and hyperparameters were
optimized using grid search.

The system was implemented on a PC with Intel
Corei7-12700K CPU, 16 GB RAM, and NVIDIA RTX
3060 GPU, running Python 3.11, TensorFlow 2.13,
PyTorch 2.1, and OpenCV 4.8. As shown in Figure
2, the software interface provided a real-time,
PC-based edge-computing environment for
stress detection without reliance on cloud.

Edge-Based Al System for Detecting Emotional Stress in Students

Voice Features

Prediction

Byrhresiori 10 warn / Retirnalmeteer tservion is from a CO00

Figure 2
Developed Al Model and Software Interface
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During the testing, the model achieved an
average processing latency of 1.8 seconds per
prediction, confirming its feasibility for
classroom applications. The graphical user
interface (GUI) displayed real-time thermal
images, extracted voice features, and predicted
emotional states.

The collected and preprocessed thermal facial
images and voice recordings from students as
input data for Al-based emotional stress

detection and stress-level estimation. Table 1
presents the descriptive statistics of the
physiological and acoustic parameters
collected from 30 voluntary student participants
during the simulated classroom experiment.
The measured parameters included forehead
and periorbital temperatures, obtained using
thermal imaging, as well as speech pitch,
speech rate, and Mel-Frequency Cepstral
Coefficient (MFCC) energy values, which are key
indicators of psychophysiological arousal.
Facial thermography has been shown to provide
reliable, non-invasive metrics for stress
detection, particularly when combined with
other physiological signals (Garbey et al., 2017).

The mean forehead temperature was M =
36.58°C, SD = 0.72, and the mean periorbital
temperature was M = 36.32°C, SD = 0.69, both
within normal physiological ranges for adults
(35.5-37.5°C; Pandolfi et al., 2020). These values
reflected subtle thermal changes associated
with emotional or cognitive stress responses.
Thermal variations in the forehead and
periorbital regions have been previously
reported as reliable indicators of stress in
academic settings (Pavlidis & Levine, 2022).

The mean speech pitch of participants was M =
228.45 Hz, SD = 38.10, and the mean speech rate
was M = 123.60 words per minute, SD = 18.43.
These acoustic features showed individual
differences in vocal expression, which often
correlate with emotional and stress-related
states. Consistent with previous research,
increased stress levels may lead to higher pitch
variability and altered speech rate due to
changes in vocal cord tension and breathing
patterns (Sondhi et al.,, 2020). The MFCC energy
coefficient, a spectral feature commonly used in
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voice-based emotion detection, had a mean of
M = 0.64, SD = 0.10, indicating relatively stable
energy distribution across speech samples.
MFCC parameters have been shown to improve
classification performance in multimodal
emotion recognition systems when combined
with thermal and visual features (Li et al., 2022).

Table 1
Descriptive Statistics of Physiological and Acoustic
Features (n = 30)

Parameter M SD Median Min Max 95% ClI

Forehead
Temperature (°C)

3658 072 36.60 3520 37.80 36.34-36.82

Periorbital
Temperature (°C)

Speech Pitch (Hz) 228.45 38.10 230.00 174.20 301.80 214.77-242.13

3632 0.69 3635 35.00 37.50 36.09-36.55

Speech Rate 123.60 18.43 124.00 94.00 157.00 116.67-130.53
(words/min)
MFCC Energy 0.64 010 065 044 081 0.60-0.68
Coefficient

The coefficient of variation (CV) for speech pitch
was approximately 16.7%, suggesting moderate
variability in participants’ vocal responses. This
variability may reflect individual differences in
emotional expressiveness, which can influence
stress detection accuracy.

A preliminary analysis of the data indicated that
all variables were approximately normally
distributed based on Shapiro-Wilk tests (p >
.05), with no extreme outliers detected. A
correlation analysis revealed moderate positive
correlations between speech pitch and MFCC
energy (r = 0.42, p < .05), and weak negative
correlations between periorbital temperature
and speech rate (r = —0.28, p = .12), suggesting
some interdependence between physiological
and acoustic indicators. Gender differences in
thermal and acoustic parameters were also
explored, but no significant differences were
found (p > .05).

Overall, these results confirm that the thermal
and voice data collected were within expected
physiological and acoustic ranges, indicating
reliable sensor calibration and proper data
collection protocols. The consistency and
quality of the dataset provide a strong
foundation for subsequent Al model training and
validation, supporting the feasibility of a
multimodal, non-contact stress detection
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system in educational environments (Villani et
al., 2021).

The performance of the Al-based emotional
stress detection system within a simulated
classroom environment. Table 2 presents the
performance metrics of the developed stress
detection models across three configurations:
thermal imaging data analyzed via a
Convolutional Neural Network (CNN), voice data
processed with a Long Short-Term Memory
(LSTM) model, and a combined multimodal
fusion model integrating both inputs. The
evaluation metrics included accuracy, precision,
recall, Fl-score, specificity, area under the
receiver operating characteristic curve (AUC-
ROC), latency, and confidence intervals, which
collectively assess the models’ reliability,
responsiveness, and feasibility for classroom
implementation.

The combined multimodal fusion model
achieved the highest accuracy (M = 91.4%, 95% CI
[88.2, 94.6]), outperforming the thermal-based
CNN model (M = 87.6%, 95% CI [83.9, 91.3]) and
the voice-based LSTM model (M = 85.9%, 95% ClI
[82.0, 89.8]). This result demonstrates that
integrating thermal and acoustic features
significantly enhances the system’'s stress
classification performance. Multimodal fusion is
known to capture complementary signals from
multiple physiological and behavioral sources,
reducing ambiguity and improving model
generalization (Zhao et al., 2020).

In terms of precision, recall, and Fl-score, the
multimodal model again outperformed the
single-modality models, yielding values of 0.89,
0.92, and 0.90, respectively. These metrics
indicate balanced performance in identifying
both stressed and non-stressed states. The
thermal CNN achieved precision = 0.86, recall =
0.88, Fl1-score = 0.87, whereas the voice LSTM
achieved precision = 0.84, recall = 0.86, F1-score
= 0.85. Specificity values were 0.88 (thermal),
0.85 (voice), and 0.91 (multimodal), confirming
the model’s ability to correctly identify non-
stressed states. The AUC-ROC values were 0.91,
0.88, and 094 for thermal, voice, and
multimodal models, respectively, reflecting
strong discriminative power. These findings
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align with Li et al. (2022), who highlighted that
deep learning architectures across modalities
optimize emotion classification through
feature-level synergy. Similarly, Pavlidis and
Levine (2022) emphasized that combining
thermal facial imaging with voice cues provides
a more holistic representation of
psychophysiological stress responses than
single modalities.

Model responsiveness, measured as latency,
ranged between 1.6 and 1.8 seconds across all
models, suggesting that real-time stress
detection is feasible wunder classroom
conditions. This latency falls within acceptable
limits for live monitoring applications (Wang et
al,, 2021), indicating that the system can provide
timely feedback without disrupting ongoing
classroom activities.

Error analysis revealed that the multimodal
model reduced misclassifications observed in
single-modality = models, particularly in
participants exhibiting subtle stress responses.
Confusion matrices indicated fewer false
positives and false negatives for the multimodal
system. Learning curves also demonstrated
stable convergence during training, suggesting
adequate generalization without overfitting.

Table 2
Performance Metrics of Stress Detection Models (n = 30)
Metric Thermal (CNN)  Voice (LSTM) (nﬁ:l"'i‘:::::l)
Accuracy (%) 87.6 (83.9-91.3) 85.9 (82.0-89.8) 91.4 (88.2-94.6)
Precision 0.86 0.84 0.89
Recall 0.88 0.86 0.92
F1-Score 0.87 0.85 0.90
Specificity 0.88 0.85 0.91
AUC-ROC 0.91 0.88 0.94
Latency (s) 17 1.6 1.8
Test Samples 180 180 180

Correlation between Al Stress Detection and
Self-Reported Stress Levels. Table 3 presents
the Pearson correlation coefficients between
Al-generated stress indices (thermal, voice,
and combined multimodal) and participants’
self-reported stress levels. The analysis aimed
to assess the degree of association between the
system's computed stress levels and
participants’ subjective perceptions of stress.
The sample consisted of n = 30 participants.
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Table 3
Pearson Correlation between Al Stress Detection and
Self-Reported Stress Levels (n = 30)

Variable r 95% Cl p-value Effect Size
Thermal Index

vs. Self-Report 084 0.70-0.92 <.000 Large
Voice Index

vs. Self-Report 0.81 0.66-0.90 <.001 Large
Combined

Multimodal Index 0.86 0.72-0.93 <.001 Large

vs. Self-Report

The results indicated strong and statistically
significant positive correlations across all
modalities. Specifically, the thermal index
correlated with self-reported stress at r = 0.84,
p < .001, and the voice index at r = 0.81, p < .001.
The combined multimodal index achieved the
highest correlation, r = 0.86, p <.001, suggesting
that integrating thermal and voice features
enhanced the predictive validity of the system
and reduced potential misclassifications
compared to single-modality models.

Based on Cohen's (1988) guidelines for
interpreting correlation strength:

e 0.10-0.29: Small
0.30-0.49: Medium
e 0.50-1.0: Large

All observed correlations fall within the large
effect size range, indicating strong alignment
between Al-generated stress indices and
participants’ subjective stress ratings.

Confidence intervals (95%) were calculated to
assess the precision of these correlations:

e Thermal index: 0.70-0.92
e Voice index: 0.66-0.90
e Combined index: 0.72-0.93

The convergence between objective system
outputs and subjective reports validates the
practical reliability  and psychometric
consistency of the Al model. These findings
demonstrate that the system effectively mirrors
human-perceived stress states, providing a
robust foundation for non-invasive stress
monitoring in educational settings. Multimodal
integration clearly offered superior
performance, reinforcing its potential for
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accurate, context-sensitive, and ethically
deployable stress detection in public school.

Conclusion. This study aimed to develop and
evaluate a PC-based, edge-computing artificial
intelligence (Al) system that utilized thermal
imaging and voice analysis to detect emotional
stress among students in a non-invasive, real-
time manner. The research addressed four
objectives: the development of the Al model and
software interface, collection of thermal and
voice data from respondents, testing and
validation in a simulated classroom
environment, and evaluation of the system’s
accuracy, responsiveness, and feasibility for
public school implementation. The Al model and
software interface were successfully developed
and integrated into a local computing system
capable of performing real-time stress
detection without cloud dependency. The system
employed a Convolutional Neural Network
(CNN) for thermal image classification and a
Long Short-Term Memory (LSTM) network for
voice sequence analysis. This architecture
enabled efficient multimodal data processing
with an average latency of 1.8 seconds,
demonstrating operational feasibility for
classroom applications while maintaining
privacy and ethical compliance.

Thermal and acoustic data were collected from
thirty voluntary student participants,
establishing reliable baseline measurements.
Physiological parameters, including forehead
and periorbital temperatures, remained within
normal ranges and reflected subtle but
measurable variations associated with
emotional stress. Acoustic parameters,
including speech pitch, speech rate, and MFCC
energy coefficients, demonstrated patterns
consistent with psychophysiological stress
indicators reported in previous studies. These
results confirm that sensor calibration and data
acquisition were robust, providing reliable
inputs for Al model training and validation.

Testing and validation revealed that the
multimodal fusion model outperformed single-
modality systems, achieving an accuracy of
91.4%, precision of 0.89, recall of 0.92, and F1-
score of 0.90. This confirmed that integrating
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thermal and acoustic features significantly
improved stress detection by capturing
complementary emotional cues. Correlation
analysis further demonstrated strong and
statistically significant alignment between Al-
generated stress indices and participants’ self-
reported stress levels, with thermal index (r =
0.84), voice index (r = 0.81), and combined
multimodal index (r = 0.86, all p <.001). Based on
Cohen's (1988) guidelines, all correlations
represent a large effect size, indicating that the
system’s classifications closely reflected
subjective human experiences and validated its
psychometric reliability and practical utility.

The study carries both theoretical and practical
implications. Theoretically, it reinforces the
effectiveness of multimodal deep learning
frameworks in psychophysiological emotion
recognition, supporting the notion that
combining complementary physiological and
behavioral signals enhances predictive validity.
Practically, the system provides educators and
policymakers with a privacy-conscious, real-
time tool to monitor student stress, enabling
early interventions and adaptive learning
strategies. The edge-computing design
addresses concerns regarding data privacy and
latency, ensuring suitability for deployment in
public school settings.

Despite these positive outcomes, the study has
several limitations. The small sample size (n =
30) from a single school limits generalizability.
Stress was measured under simulated
classroom conditions, which may not fully
replicate real academic stressors, and data
were collected in a single short-term session
without longitudinal tracking. The system
focused solely on stress detection, excluding
other emotional states, and its performance
under varying environmental conditions was
not extensively tested. Additionally, Al
predictions were not validated against clinical
measures or human expert ratings, and the
participant group was limited in age and
cultural  diversity, potentially  affecting
generalizability.

Future research should address these
limitations by conducting multi-site studies with
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larger, more diverse samples (n > 50),
performing longitudinal assessments, and
extending the model to detect a broader range
of emotional states. Environmental robustness
testing, clinical validation, and integration into
practical educational interventions are also
recommended to enhance system utility and
generalizability.

In conclusion, the study demonstrated that the
developed Al-based multimodal stress
detection system successfully met its
objectives. The edge-computing approach
enabled real-time, non-invasive, and privacy-
conscious monitoring of student stress,
combining  technological accuracy with
operational feasibility. Strong correlations with
self-reported stress levels confirmed the
system’s practical reliability and psychometric
validity. While limitations exist, the research
establishes a solid foundation for the
implementation of Al-assisted emotional
monitoring tools in educational environments,
supporting early interventions and promoting
student well-being through data-driven
psychological insights.
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